
ACM SIGSOFT Software Engineering Notes vol 25 no 1 January 2000 Page 108 

TestTalk: Software Test Description Language: 
http : /iwww. ics. uci. edu/~djrledcs/Perp Test. html 
University of California, Irvine - Debra Richardson 

Software tests are valuable intellectual assets, especially in long- 
lived, multi-version, multi-platform commercial soRware. The 
highly-publicized Y2K software problem provides a very good 
sense of the problems that arise in such a domain as well as how 
long software tests should last. Software tests represent significant 
investment. Test developers are generally on their own to deter- 
mine how to write better automated software tests. This leads to a 
number of problems, including: (1) Understandability: test cases 
and test oracles are typically buried in test code and hence diffi- 
cult to rediscover; (2) Maintainability: automated tests are ex- 
tremely sensitive to changes in the implementation. Both 
problems lead to difficulty in adjusting a legacy automated test 
because of the arbitrary nature of the current practice of test code 
development. 

TestTalk is a software test description language designed for 
specifying test cases and test oracles in a manner natural to the 
software testing process rather than the programming or devel- 
opment process. TestTalk helps testers focus on requirements and 
design aspects of software tests rather than the implementation 
details of test execution. By enabling practitioners to separate 
concerns between software test description and test execution, 
TestTalk provides the means for creating software tests that are 
readable, maintainable, and portable, yet executable. 

The ultimate goal for TestTalk is to support the following maxim: 
"Write Once, Test by Anyone, Anytime, Anywhere, with Any- 
thing". By "write once", we mean that test descriptions only have 
to be written once but cart be used perpetually. New transforma- 
tion rules evolve old tests to account for various changes. By "test 
by anyone", we mean that TestTalk descriptions are so easy to 
understand that a tester can easily take over tests written by other 
testers or developers. By "anytime", we mean that TestTalk tests 
survive over time through application evolution and revisions. By 
"anywhere", we mean that TestTalk tests can be transported to 
another platform or operating system without modification. By 
"with anything", we mean that switching the test automation en- 
vironment does not nullify TestTalk tests. 

We are building a toolset to support the TestTalk language. The 
current toolset consists of a prototype parser and translator, which 
recognizes test descriptions and transformation rules (both ex- 
pressed in what we consider the core language). The TestTalk 
toolset produces automated test programs for the application- 
under-test for a specific platform and test automation tool by us- 
ing the transformation rules in the translation of the test descrip- 
tions. 

UML/Ana/yzer - A System for Defining and Analyzing the 
Conceptual Integrity of UML Models: http:llsunset.usc.edu/ 
University of Southern California, Center for Software Engineer- 
ing (USC/CSE) - Alexander Egyed 

Software development is about modeling a real problem, solving 
the model problem, and interpreting the model solution in the real 
world. In doing so, a major emphasis is placed on mismatch 

identification and reconciliation within and among system views 
(such as diagrams). UML/Analyzer describes and identifies 
causes of architectural and design mismatches across UML views 
as well as outside views represented in UML (e.g., C2 style ar- 
chitectures). 

* It is integrated with Rational Rose (market leader for OO 
modeling) 

. It implements a generic view integration framework 
• It incorporates UML's Object Constraint Language (OCL) 

UML/Analyzer supports the definition of mismatch rules and 
model constraints. It also defines what information can bc ex- 
changed and how it can be exchanged. With that, architects can 
identify and resolve inconsistencies between views automatically: 

• Mapping: Identifies related pieces of information and thereby 
describes what information is overlapping and can be ex- 
changed. 

• Transformation: Extracts and converts model elements of 
views in such a manner that they can be interpreted and used 
by other views (how to exchange information). 

• Differentiation: Traverses the model to identify (potential) 
mismatches within its elements. Mismatch identification 
rules can frequently be complemented by mismatch resolution 
rules. 

UML/Analyzer is integrated with Rational Rose and is used to 
create and modify views (synthesis). Rational Rose models are 
converted through an automated process into UML-A where they 
are analyzed via UML/Analyzer. Model constraints and mismatch 
rules are verified via a parser component. The conceptual integ- 
rity of the model is then validated through the model checker 
component. The model checker makes use of mapping, transfor- 
mation, and differentiation. Generated modeling information as 
well as identified model mismatches can be fed back into Rational 
Rose for visualization. 

• UML/Analyzcr identifies inconsistencies and incomplete- 
nesses, 

• Model currently supports class, object, sequent, collabora- 
tion, state, and various architectural diagrams (e.g., layered 
and C2) 

* Model constraints, mismatch rules, and transformation rules 
can be modified without programming. 

WebDA V: http://www.ics.uci.edulpub/edcs/ 
University of California, Irvine - Richard Taylor/David Redmiles 

WebDAV is an extension of HTTP that provides a standard infra- 
structure for asynchronous collaborative authoring of a wide vari- 
ety of content across the Internet. WebDAV has been approved by 
the IETF and is being actively developed by a number of Software 
vendors, including Microsoft, IBM, Xerox, Novell, DataChannel, 
and CyberTeams. This demo will feature a WebDAV diem 
(WebDAV Explorer) which will show how the WebDAV protocol 
facilitates collaborative use of distributed files. 




